Third-order semi-discrete central-upwind scheme for hyperbolic conservation laws 求解双曲型守恒律的半离散三阶中心迎风格式
Kind of uniform second order differential scheme for solving hyperbolic conservation laws 稳定性可保证二阶格式在多重网格中的有效性和经济性
It may serve as effective finite-difference method s for hyperbolic conservation laws 本方法使用方便,易于推广,是求解双曲型守恒律非常有效的差分方法。
In this thesis, we couple high resolution shock capturing method and level set method to compute hyperbolic conservation laws 本文将高分辨率激波捕捉格式与levelset方法结合起来计算双曲守恒律方程(组)。
In the multidimensional, these schemes are maximum and minimum bounds under the restriction of cfl condition . these schemes are extended to system of hyperbolic conservation laws 含有刚度源项的双曲守恒律可以用宋描述许多物理问题,如气体动力学、水波、交通流等等。
At last this method is applied to 2-d hyperbolic conservation laws, and can be extended to higher dimensions easily for the computation of numerical divergence dimension by dimension 最后这种方法被应用到求解二维双曲型守恒律,同时还可以很容易地通过在一维基础上计算数值散度的方式扩展到高维情形。
For the numerical computation of one-dimensional hyperbolic conservation laws, various difference schemes were established . these schemes are becoming more and more perfect which have higher resolution and accuracy 在一维双曲守恒律方程的的数值计算中,众多学者研究并建立了各种各样的差分格式,这些格式不断趋于成熟,分辨率更强,精度更高。
In this paper, we develop the high-order accurate essentially non-oscillatory ( eno ) schemes on one and two-dimensional structured meshes in the finite volume formulation, and discuss their applications in hyperbolic conservation laws 本文构造了一维、二维结构网格中的高阶精度基本无振荡(eno)有限体积格式,并且讨论了它在双曲守恒型方程中的应用。
However, when we use these schemes to compute the initial problem of hyperbolic conservation laws, there is still numerical dissipation near the interface, that is to say, the resolution is decreased near the interface 但是,我们知道,即使用这两种格式来计算双曲守恒律方程的初值问题,在间断面的附近仍会发生数值耗散,也就是说在间断处的分辨率降低了。
Double variable technique is used by kruzkov in 70's to obtain the existence, uniqueness and regularity of entropy solution to ( 0.2 . 1 ) for the scalar case, especially the contractive properity of entropy solution . kuznetsov applied this technique to approximation of scalar hyperbolic conservation laws ( 0.2 . 1 ) in 1976 kruzkov481在70年代用双变t技巧(doublevariableteehnique)解决了多维单个双曲守恒律(0.1.1)的摘解的适定性问题,即嫡解的存在性,唯一性及正规性结果,特别摘解的ll收缩性质